Spatial-Temporal Autoregressive Dynamic Model
نویسندگان
چکیده
Although a myriad of methods have been advanced to tackle spatial and temporal structures in data separately, it becomes difficult to analyze these data using classical linear regression models when spatial-temporal structures coexist, especially when the data size is relatively large. In this article, we demonstrate a simple to implement method to handle spatial-temporal structures simultaneously. Building on the classical linear regression model, we propose to account for spatial-temporal autocorrelation in the residuals from the linear regression model iteratively until the main assumptions of the model are satisfied. Neighbors and their weights are defined using the strength of correlation at different spatial-temporal lags. Using the proposed methodology aerosol optical depth (AOD) from satellite data will be corrected for meteorological conditions and spatial-temporal structure to predict air quality for Delhi and its neighboring areas. This methodology will have greater applications for estimating air quality at unprecedented spatial-temporal resolutions for air quality surveillance and management, epidemiological and environmental justice research, because the existing network of air pollution monitoring stations has limited spatial-temporal coverage.
منابع مشابه
Determination of Spatial-Temporal Correlation Structure of Troposphere Ozone Data in Tehran City
Spatial-temporal modeling of air pollutants, ground-level ozone concentrations in particular, has attracted recent attention because by using spatial-temporal modeling, can analyze, interpolate or predict ozone levels at any location. In this paper we consider daily averages of troposphere ozone over Tehran city. For eliminating the trend of data, a dynamic linear model is used, then some featu...
متن کاملSpatial Time-Series Modeling: A review of the proposed methodologies
This paper discusses three modelling techniques, which apply to multiple time series data that correspond to different spatial locations (spatial time series). The first two methods, namely the Space-Time ARIMA (STARIMA) and the Bayesian Vector Autoregressive (BVAR) model with spatial priors apply when interest lies on the spatio-temporal evolution of a single variable. The former is better sui...
متن کاملAnalysis of Hierarchical Bayesian Models for Large Space Time Data of the Housing Prices in Tehran
Housing price data is correlated to their location in different neighborhoods and their correlation is type of spatial (location). The price of housing is varius in different months, so they also have a time correlation. Spatio-temporal models are used to analyze this type of the data. An important purpose of reviewing this type of the data is to fit a suitable model for the spatial-temporal an...
متن کاملSpatially Homogeneous Dynamic Textures
We address the problem of modeling the spatial and temporal second-order statistics of video sequences that exhibit both spatial and temporal regularity, intended in a statistical sense. We model such sequences as dynamic multiscale autoregressive models, and introduce an efficient algorithm to learn the model parameters. We then show how the model can be used to synthesize novel sequences that...
متن کاملThe Dynamic Spatial Ordered Probit Model: Methods for Capturing Patterns of Spatial and Temporal Autocorrelation in Ordered Response Data, Using Bayesian Estimation
Many databases involve ordered discrete responses in a temporal and spatial context, including, for example, land development intensity levels, vehicle ownership, and pavement conditions. An appreciation of such behaviors requires rigorous statistical methods, recognizing spatial effects and dynamic processes. This study develops a dynamic spatial ordered probit (DSOP) model in order to capture...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007